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ROBUST MEAN-VARIANCE PORTFOLIO SELECTION WITH 

WARD AND COMPLETE LINKAGE CLUSTERING ALGORITHM 

 

 
Abstract. In this paper, we present a robust mean-variance portfolio 

selection method with preprocessing data using cluster analysis. Using this 

proposed method, we obtain the best portfolio (i.e. portfolio with the highest 
Sharpe ratio) efficiently when there is a large number of stocks involved in the 

formulation of the portfolio. On the other hand, this procedure is also robust 

against the possibility of outliers existence in the data. Based on our empirical 
study, we find that the performance of portfolio produced using clustering with 

Ward algorithm is better than portfolio performance produced by the clustering 

with complete linkage algorithm for all risk aversion values 𝛾. Besides, we also 
find that portfolio performance with robust FMCD estimation is better than 

portfolio performance with robust S estimation and classic MV portfolio for all risk 

aversion values 𝛾, for both portfolios produced by cluster analysis with Ward 

algorithm and complete linkage algorithm. 
Keywords: cluster analysis, Ward, complete linkage, Sharpe ratio, robust 

portfolio. 
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1. Introduction 
 

In the recent years, there are strong interest from practitioners who want 

time and cost efficiency in doing portfolio management. This aim can be reached 
by e.g. using clustering analysis as a first step in selecting securities that will form 

an optimum portfolio. The optimal portfolio selection using cluster analysis has 

been carried out by e.g., Guan and Jiang (2007), Tolaet. al. (2008), Chen and 

Huang (2009), Nanda et al. (2010) and Long et.al. (2014).The difference between 
these studies lies in the method of clustering analysis used and the method of 

selecting securities in the optimal portfolio. In all of the above studies, the optimal 

portfolio obtained by meaning of Mean-Variance (MV) Markowitz portfolio 
model. All of these studies state that the usage of cluster analysis in the formation 

of the optimum portfolio is very efficient when the number of securities involved 

in the portfolio formation is relatively large. 
The main problem of the MV portfolio model is that the mean vectors and 

variance-covariance matrices must be estimated from data which can be highly 

volatile. Parameter estimation can be done with various choices of estimation 

techniques, which will inevitably contain estimation errors. As a very important 
input in the formation of MV portfolio models, estimation errors will significantly 

affect the results of optimal portfolio formation. Several studies related to 

estimation errors and their relationship with optimal portfolio formation have been 
carried out by Best and Grauer (1991), Broadie (1993), Chopra and Ziemba (1993), 

Bengtsson (2004), and Ceria and Stubbs (2006). Based on these studies conclude 

that although the MV model is supported by strong theory and has eased in 

computing, the MV model shows some weaknesses including the optimal portfolio 
produced by this model is not well diversified. The resulting portfolio tends to be 

concentrated in a small portion of assets. In addition, the MV model is also highly 

sensitive to changes in input parameters, which are the mean vector and the 
variance-covariance matrix. 

Therefore some researchers have built a robust portfolio, a portfolio that 

can reduce the error of the estimated vector mean and the variance-covariance 
matrix in the MV portfolio model. One of the standard approaches in forming an 

optimal robust portfolio is through a robust estimation approach. Several studies on 

the formation of optimal portfolios using robust estimation have been carried out 

by Victoria-Feser (2000), Lauprete (2001), Vaz-de Melo and Camara (2003), Zhou 
(2006), Welsh and Zhou (2007), DeMiguel and Nogales (2008), Kusch (2012), Hu 

(2012), Supandi (2017).The difference between these studies lies in the use of 

robust estimates. All of the results of the study stated that the performance of the 
portfolio with robust estimation is better than the classical portfolio. However, 

none of the above literature has considered a combination of cluster analysis and 

robust estimation methods in the formation of an optimum portfolio. 
In this paper, as our new contribution, we combine cluster analysis and 

robust estimation method in the formation of an optimum portfolio. We use the 
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Figure 1. Optimal portfolio selection process 
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clustering method with Ward and complete linkage algorithm in grouping of stocks 

into clusters. For the mean and covariance of the data, we use Fast Minimum 

Covariance Determinant (FMCD) and S robust estimation.  

2. Material and Method  

Based on the literature review, it can be seen that the portfolio selection 

problem can be resolved more efficiently by grouping stocks into clusters and then 

selecting stocks in clusters to form efficient portfolios. The problem framework in 
this study is shown in Figure 1.  

 
 
 

 

 

 

 

 

 
 

 

 
First, stocks are grouped into several clusters using the Ward algorithm and 

complete linkage clustering which will be discussed in the next section. 

Furthermore, the return and risk of historical stock data are calculated in each 
cluster. From the calculation of return and risk, it can be determined the 

performance of each stock in each cluster using the Sharpe ratio. The next step is to 

choose stocks that will represent each cluster to form the optimum portfolio. The 

stock chosen as representations of a cluster are stocks with the highest Sharpe ratio. 
After the stocks that build the optimum portfolio are selected, the next step is to 

determine the weight of each stock that builds the portfolio using robust FMCD 

estimation method and robust S estimation method. To see the advantages of these 
two methods, the performance of portfolios that formed then compared with 

portfolio performance formed using the classic Mean-Variance (MV) method.  

 

2.1 Mean-Variance portfolio 
In investment management, there is a strong and linear relationship 

between risk and return. If the risk is high, the return will also be high, whereas if 

the return is low, the risk will also be low. Harry M. Markowitz developed a theory 
in the 1950s called the Modern Portfolio Theory. This theory formulates the 

existence of the elements of return and risk in an investment, where the risk 
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element can be minimized through diversification and combining various 
investment instruments into a portfolio. In 1952 the theory was widely published in 

the Journal of Finance. 

Markowitz's portfolio theory is based on the mean and variance approach, 
where the mean is a measurement of the level of the expected return and variance 

is a measurement of the level of risk (Markowitz, 1952). Therefore, Markowitz's 

portfolio theory is also called the mean-variance model (MV). This model 

emphasizes efforts to maximize expected return and minimize risk to choose and 
build an optimal portfolio. According to Supandi (2017), the mean-variance 

portfolio can be formulated by solving the following optimization problems: 

max
𝒘
𝒘′𝝁 −

𝛾

2
𝒘′𝚺𝒘      (1) 

𝒘′𝒆 = 1       (2)  

Where w denotes the weight of the portfolio, 𝝁 is the mean vector, 𝚺 is covariance 

matrix, e is the column matrix where all the elements are 1 and 𝛾 ≥ 0 are the risk 

aversion parameters, namely the relative measure of risk avoidance. The mean-

variance portfolio model is chosen by investors using the utility function criteria. 
Assuming that investor attitudes are risk averse, that is investors will choose 

portfolios that provide the maximum expected utility E(U). So the mean-variance 

portfolio is equivalent to 

max 𝐸(𝑈(𝒘))       (3) 

𝒘′𝒆 = 1       (4)  

Given initial capital 𝑊0, under a portfolio with a weight vector w at the end 

of the period, the capital becomes 𝑊0(1 + 𝑅𝑝). Where 𝑅𝑝 is a random variable of 

portfolio return. The utility function of 𝑊0(1 + 𝑅𝑝)is 𝑈(𝑊0(1 + 𝑅𝑝)). The utility 

function can be expand using the Taylor second order approximation i.e.  

𝑈(𝑊0(1 + 𝑅𝑝))

= 𝑈(𝑊0) + 𝑈
′(𝑊0)𝑊0𝑅𝑝 +

1

2
𝑈′′(𝑊0)(𝑊0𝑅𝑝)

2

+
1

6
𝑈′′′(𝑊0)(𝑊0𝑅𝑝)

3
+⋯ 

= 𝑈(𝑊0) + 𝑊0𝑈
′(𝑊0)𝑅𝑝 +

1

2
𝑊0
2𝑈′′(𝑊0)𝑅𝑝

2 + 𝑂(𝑅𝑝
3)  (5)  

Taking the expected value of equation (5) we obtained  
 

𝐸 (𝑈(𝑊0(1 + 𝑅𝑝))) = 𝑈(𝑊0) + 𝑊0𝑈
′(𝑊0)𝜇𝑝 +

1

2
𝑊0
2𝑈′′(𝑊0)𝜎𝑝

2 

= 𝑈(𝑊0) + 𝑊0𝑈
′(𝑊0) (𝜇𝑝 +

1

2
𝑊0

𝑈′′(𝑊0)

𝑈′(𝑊0)
𝜎𝑝
2)   (6)  
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Based on the approximation above, maximizing the expected utility 

function is equivalent to maximizing  

𝜇𝑝 −
1

2
𝛾𝜎𝑝

2       (7) 

where𝛾 = −𝑊0
𝑈′′(𝑊0)

𝑈′(𝑊0)
express the relative size of risk aversion. It is known 

that 𝜇𝑝 = 𝒘′𝝁and 𝜎𝑝
2 = 𝒘′𝚺𝒘, so equation (7) can be rewritten in the form 

𝒘′𝝁 −
𝛾

2
𝒘′Σ𝒘       (8) 

So equation (1) is equivalent to equation (8) plus the constraint 𝒘′𝒆 = 1.  

Every investor wants a certain amount of risk to obtain a certain level of 

return. Because profits compensate with risks, investors should be balance the trade 

of between profits and risks by choosing the right 𝛾. 

There are two cases of extreme situations, where investors want to increase 

the rate of return (profit) and reduce risk (loss), that is when 𝛾 = 0, equation (1) 
provides the maximum rate of return without regard to the risk to be borne. 

Meanwhile, if 𝛾 = ∞, investors will choose the minimum risk regardless of the 

level of return. 

The optimization problems in equations (1) and (2) can be solved using the 
following Lagrange method. Firstly, form the Lagrange function: 

𝑳 = 𝒘′𝝁 −
1

2
𝛾𝒘′Σ𝒘+ 𝜆(𝒘′𝒆 − 1)    (9)  

Based on the Kuhn-Tucker theorem, the necessary conditions for the 
optimal of equation (9) are:  

𝜕𝑳

𝜕𝒘
= 0                   (10) 

𝜕𝑳

𝜕𝜆
= 0        (11) 

From equations (9), (10), and (11) we obtain  

𝒘 =
Σ−1

𝛾
(𝝁 + 𝜆𝒆)      (12)  

and 

𝒆′𝒘 = 1       (13)  

Substitute equation (12) in to equation (13) we obtain  

𝜆 = 𝛾(𝒆′Σ−1𝒆)−1 − (𝒆′Σ−1𝒆)−1𝒆′Σ−1𝝁                  (14)  

Substituting equation (14) in equation (12) produces:  

𝒘 = 
Σ−1

𝛾
{𝝁 + 𝒆[𝛾(𝒆′Σ−1𝒆)−1 − (𝒆′Σ−1𝒆)−1𝒆′Σ−1𝝁]} 

=
1

𝛾
(Σ−1 − Σ−1𝒆(𝒆′Σ−1𝒆)−1𝒆′Σ−1)𝝁 + Σ−1𝒆(𝒆′Σ−1𝒆)−1 (15)  
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Equation (15) shows that the optimal portfolio (w) depends on input 𝝁 and 𝚺 and 
assumes multivariate normality.  

The sufficient condition for optimal optimization is used to determine 

whether the optimal point w obtained from the necessary condition for optimal 
optimization is the minimum or maximum. 

Suppose that function (9) is continuous and twice differentiable. The 

Hessian matrix 𝓗 for function (9) is  

𝓗 = [

𝜕2𝑳

𝜕𝒘2
𝜕2𝑳

𝜕𝒘𝜕𝜆

𝜕2𝑳

𝜕𝜆𝜕𝒘

𝜕2𝑳

𝜕𝜆2

] = [
−𝛾𝚺 𝒆

𝒆′ 0
]    (16)  

Furthermore, based on the Hessian matrix (16) it can be determined 

whether the weight of the portfolio (15) is the minimum or maximum solution with 

the following criteria (Chong and Zak, 2001).  

1. If 𝓗 is positive definite matrix, then w is the minimum solution; 

2. If 𝓗 is negative definite matix, then w is the maximum solution. 

According to Leon (2002), if a symmetric matrix A of size pxp is positive 

definite, it will have the following properties:  

1. If A is a symmetric matrix positive definite, then |𝐴| > 0.  

2. If A is a symmetric matrix positive definite, then all major submatrices of 

𝐴1, …𝐴𝑝 are symmetric matrix positive definite.  

3. If A is a symmetric matrix positive definite, then A can be reduced to upper 

triangular matrix using  row elementary matrix operations and the pivot 

element will always be positive.  
Otherwise, a symmetric matrix A of size pxp is negative definite, it will the 

following properties:  

1. If A is a symmetric matrix negative definite, then |𝐴| < 0.  
2. If A is a symmetric matrix negative definite, then all major submatrices of 

𝐴1, …𝐴𝑝 are symmetric matrix negative definite.  

3. If A is a symmetric matrix negative definite, then A can be reduced to upper 

triangular matrix using  row elementary matrix operations and the pivot 

element will always be negative.  

A square matrix 𝑨𝑝𝑥𝑝 is called a negative matrix and is denoted by 𝑨 ≺ 0 

if A is symmetric and 𝒙′𝑨𝒙 < 0 for every 𝒙 ≠ 0, 𝒙 ∈ ℝ𝑝.  

The covariance matrix of the variable 𝒓𝑖 ∈ ℝ
𝑝, 𝑖 = 1,… ,𝑁 with the mean 

vector 𝝁 is 

Σ =
1

𝑁
∑ (𝒓𝑖 − 𝝁)(𝒓𝑖 − 𝝁)′
𝑁
𝑖=1      (17)  

Suppose 𝑨 = −𝚺, for each vector 𝒙 ∈ 𝑅𝑝 where 𝒙 ≠ 0, then 

𝒙′𝑨𝒙 = −𝒙′ (
1

𝑁
∑(𝒓𝑖 − 𝝁)(𝒓𝑖 − 𝝁)′

𝑁

𝑖=1

)𝒙 
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= −
1

𝑁
∑𝒙′(𝒓𝑖 − 𝝁)(𝒓𝑖 − 𝝁)′𝒙

𝑁

𝑖=1

 

= −
1

𝑁
∑((𝒓𝑖 − 𝝁)𝒙)′(𝒓𝑖 − 𝝁)′𝒙

𝑁

𝑖=1

 

= −
1

𝑁
∑ ((𝒓𝑖 − 𝝁)𝒙)

2𝑁
𝑖=1 < 0                    (18)  

Therefore the matrix 𝑨 = −𝚺 is a matrix negative definite. Given the 

Hessian matrix 𝓗 (16) and assumed investor is risk averse (𝛾 > 0). Suppose the 

main submatric is 𝑨𝑝 = 𝛾𝚺, i.e.   

𝑨𝑝 =

(

 
 

𝜎11
∗ 𝜎12

∗ ⋯ 𝜎1𝑝
∗

𝜎21
∗ 𝜎22

∗ ⋯ 𝜎2𝑝
∗

⋮ ⋮ ⋱ ⋮
𝜎𝑝
∗ 𝜎𝑝2

∗ ⋯ 𝜎𝑝𝑝
∗

)

 
 

     (19)  

where𝜎𝑖𝑗
∗ = 𝛾𝜎𝑖𝑗  for all 𝑖, 𝑗 = 1,… , 𝑝. 

The Hessian matrix 𝓗 (16) can be can be written as 

(

 
 

𝜎11
∗ 𝜎12

∗ ⋯ 𝜎1𝑝
∗ 1

𝜎21
∗ 𝜎22

∗ ⋯ 𝜎2𝑝
∗ 1

⋮ ⋮ ⋱ ⋮ ⋮
𝜎𝑝
∗ 𝜎𝑝2

∗ ⋯ 𝜎𝑝𝑝
∗ 1

1 1 ⋯ 1 0)

 
 

     (20)  

After the (p-1)-th row elementary operation, the Hessian matrix 𝓗 (16) 

becomes:  

(

 
 
 

𝜎11
∗ 𝜎12

∗ ⋯ 𝜎1𝑝
∗ 1

0 𝜎22
∗(1)

⋯ 𝜎2𝑝
∗(1)

1

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 𝜎𝑝𝑝
∗(𝑝−1)

1

0 0 ⋯ 1 0)

 
 
 

    (21)   

Because |𝑨𝑝| < 0, using the negative definite property then the pivot 

element is 𝜎𝑝𝑝
∗(𝑝−1)

< 0.Furthermore, we perform p-th row elementary operation, 

we obtained the following matrix  
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(

 
 
 
 

𝜎11
∗ 𝜎12

∗ ⋯ 𝜎1𝑝
∗ 1

0 𝜎22
∗(1)

⋯ 𝜎2𝑝
∗(1)

1

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 𝜎𝑝𝑝
∗(𝑝−1)

1

0 0 ⋯ 0 −
1

𝜎𝑝𝑝
∗(𝑝−1)

)

 
 
 
 

    (22)  

Based on the matrix (22), it is found that |𝓗| = |𝐴𝑝|(−
1

𝜎𝑝𝑝
∗(𝑝−1)) < 0. 

Therefore, in this case the Hessian matrix (22) is a symmetric matrix negative 

definite. It can be concluded that the solution (15) is a solution that will maximize 
the objective function (9). 

 

2.2 Clustering stocks 
Because the number of stocks available in the capital market is quite large, 

it is very difficult to determine the proportion of investment for each stock. 

Therefore, it is necessary to use data mining techniques to deal with this. One of 
the data mining techniques that can be used is cluster analysis. Cluster analysis is a 

statistical analysis that aims to separate objects into several groups that have the 

same/different characteristics from one group to another group (Xu and Wunsch, 

2009). In this analysis, each group is homogeneous between members in groups or 
variations of objects in groups that are formed as small as possible. Cluster 

analysis, also called segmentation, has various purposes. Everything is related to 

grouping or segmenting several objects into subsets or clusters. Objects in a cluster 
will have a closer relationship compared to objects in other clusters. 

There are many cluster techniques in the literature. In this study, the 

clustering using Ward and complete linkage algorithm will be applied. Ward 
cluster algorithm is a clustering method based on the square of the distance in the 

cluster and the square of distance between the clusters. While the complete linkage 

clustering algorithm is a clustering method based on the farthest distance between 

objects. If two objects are separated by long distances, then the two objects will be 
combined into one cluster. 

 

2.3 Sharpe ratio 
After the clusters are formed, then the performance of each stock will be 

assessed in each cluster using the Sharpe ratio. Sharpe ratio or Sharpe index is a 

measure of excess return (or risk premium) per unit risk in an asset Sharpe (1994). 

Furthermore, Sharpe (1994) state that Sharpe ratio is used to characterize how well 
asset returns compensate investors for the risks taken. Sharpe ratio (SR) is 

calculated by comparing the difference between stock returns (R) and risk return 

free rate (𝑅𝑓) with a standard deviation of stock return (𝜎) or can be written as 

follows: 
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𝑆𝑅 =
𝑅−𝑅𝑓

𝜎
        (23) 

In general, it can be said that the greater the value of the Sharpe ratio of a 

stock, the better the performance of the stock.  

 

2.4 Robust estimation 

There are many types of robust estimation for multivariate data. In this 

study robust estimation used is robust estimation which is included in the affine 
equivariant class. 

Given a data set (𝑹 = 𝒓1, 𝒓2, … , 𝒓𝑛)with 𝒓𝑖 ∈ ℝ
𝑝. The robust estimate for 

the mean vector is �̂�(𝑹) ∈ ℝ𝑝while the covariance matrix estimation is �̂�(𝑹) ∈ P𝑝 

(the set of all symmetric matrices positive definite of size pxp). According to 

(Marona et al, 2006), an estimation is included in the affine equivariant class if it 
has the properties described in the following definition.  

Definition 2.1 (Marona et al, 2006)  

Given Q is an invertible matrix of size pxp, vector 𝒗 ∈ ℝ𝑝 and data sets 𝑹 ∈ ℝ𝑝𝑥𝑛.  

i. �̂� is affine equivariant if  �̂�(𝑸𝑹+ 𝒗) = 𝑸�̂�(𝑹) + 𝒗 

ii. �̂� is affine equivariant if  �̂�(𝑸𝑹+ 𝒗) = 𝑸�̂�(𝑅) + 𝒗 

Robust estimation included in the affine equivariant class that will be used in 
this study are Fast Minimum Covariance Determinant (FMCD) and S estimation. 

The following will be briefly presented the FMCD and S estimation. We also 

presented the procedure for determining �̂� and �̂� using the robust FMCD 
estimation method and the robust S estimation method. 

2.4.1 Robust FMCD estimation 

The minimum covariance determinant (MCD) estimation aims to find 
robust estimates based on the observations of total observations (n), where the 

covariance matrix has the smallest determinant. The MCD estimation is a pair of 

�̂� ∈ ℝ𝑝  and �̂� is a symmetric positive definite matrix with a dimension of 𝑝𝑥𝑝 

from a sample of h observation, where 
(𝑛+𝑝+1)

2
≤ ℎ ≤ 𝑛 with  

�̂� =
1

ℎ
∑ 𝒓𝑖
ℎ
𝑖=1        (24) 

The estimation of the covariance matrix can be obtained by solving the following 
equation: 

�̂� =
1

ℎ
∑ (𝒓𝑖 − �̂�)(𝒓𝑖 − �̂�)′
ℎ
𝑖=1                    (25) 

MCD calculations can be very complicated if the data dimensions are 

getting bigger, this is because this method must examine all possible subsets of h 
from a number of n data. Therefore Rousseeuw and Driessen (1999) found a faster 

calculation algorithm for calculating MCD called Fast MCD (FMCD). The FMCD 

method is based on the C-Step theorem described below. 
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Theorem 2. 1 (Rousseeuw and Driessen, 1999) 

If 𝐻1 is the set of size h taken from data of size n, the sample statistics are: 

�̂�1 =
1

ℎ
∑ 𝒓𝒊𝑖∈𝐻1        (26)  

�̂�1 =
1

ℎ
∑ (𝒓𝑖 − �̂�

1)(𝒓𝑖 − �̂�
1)𝑖∈𝐻1 ′     (27)  

If |�̂�1| > 0 than distance 𝑑𝑖 = (𝒓𝑖; �̂�
1 , �̂�1). Next, specify 𝐻2 is subset consist of the 

observation with the smallest distance 𝑑𝑖, namely {𝑑1(𝑖)|𝑖 ∈ 𝐻2} =
{(𝑑1)1, … , (𝑑1)ℎ} where (𝑑1)1 ≤ (𝑑1)2 ≤ ⋯ ≤ (𝑑1)𝑛 is a sequential distance. 

Based on 𝐻2, calculate �̂�2 and �̂�2 using equations (19) and (20), so that   

|�̂�2| ≤ |�̂�1|        (28)  

Equation (28) will be the same if �̂�1 = �̂�2and �̂�1 = �̂�2.  

C-Step theorem is done repeatedly until |�̂�𝑛𝑒𝑤| = 0or |�̂�𝑛𝑒𝑤| = |�̂�𝑜𝑙𝑑|. However, 

there is no guarantee that the end of the iteration process will produce a new 

Σ̂𝑛𝑒𝑤 that has global minimum of objective function the MCD estimation. 
Therefore, the MCD solution approach can be done by selecting a number of initial 

sets of 𝐻1, then using C-Step for each set to get the smallest determinant. 

Rousseeuw and Driessen (1999) created an algorithm to overcome this problem 
known as the Fast Minimum Covariant Determinant (FMCD) algorithm. The 

process of calculating FMCD estimation can be explained in the following 

algorithm:  

1. Take subset of the matrix R consist of ℎ = (𝑛 + 𝑝 + 1)/2  observations and 

denoted by 𝐻1. 

2. Calculate mean vector (�̂�1) and covariance matrix (�̂�1) 
3. Calculate mahalanobis distance 𝑑1(𝑖) = (𝒓𝑖 − �̂�1)′Σ1

−1(𝒓𝑖 − �̂�1) 
4. Sort 𝑑1(𝑖) from the smallest to the largest value  

5. Define the new subset with 𝐻2, such that 
{𝑑1(𝑖); 𝑖 ∈ 𝐻2}{(𝑑1)1:𝑛, (𝑑1)2:𝑛, … , (𝑑1)ℎ:𝑛} 

where di mana(𝑑1)1:𝑛 ≤ (𝑑1)2:𝑛 ≤ ⋯ ≤ (𝑑1)ℎ:𝑛 

6. Calculate mean vector (�̂�2) and covariance matrix (�̂�2), and 𝑑2(𝑖) 

7. Repeat steps 1 through steps 6 until we get |�̂�2| ≤ |�̂�1| 
 

2.4.2 Robust S estimation 

This estimation was first introduced by Rosseeuw and Yohai (1984) which 
was later developed again by Lopuhaa (1989) and Davies (1987).  

Definition 2.2 (Davies, 1987) 

Given {𝒓𝒊, 𝑖 = 1,… , 𝑛} is data set in ℝ𝑝 and 𝑃𝑝 is set of symmetric matrices 

positive definite with size 𝑝𝑥𝑝. S estimation for measure of location �̂� ∈ ℝ𝑝 and 

dispersion �̂�(𝑅) ∈ 𝑃𝑝 is a pair of �̂� and �̂�(𝑅) that minimized |𝜮| with condition  
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1

𝑛
∑ 𝜌[(𝒓𝑖 − 𝝁)

′𝛴−1(𝒓𝑖 − 𝝁)]
1/2𝑛

𝑖=1 = 𝑏0    (29)  

where𝜌 is loss function and 𝑏0 is constant. This constant must be determined 
precisely because this value affects the result of estimation. If the data distribution 

is unknown then we choose 𝑏0 = 𝐸{𝜌‖𝑟‖}. 
The S estimator can be obtained by solving the following equation: 

1

𝑛
∑ 𝑢(𝑑𝑖)(𝒓𝑖 − 𝝁)
𝑛
𝑖=1 = 0      (30)  

1

𝑛
∑ 𝑝𝑢(𝑑𝑖)(𝒓𝑖 − 𝝁)(𝒓𝑖 − 𝝁)

′ − 𝑣(𝑑𝑖)𝚺
𝑛
𝑖=1 = 0   (31)  

where 𝑑𝑖 = (𝒓𝑖 − 𝝁)
′𝚺−1(𝒓𝑖 − 𝝁), 𝜓(𝑑𝑖) =

𝜕𝜌

𝜕𝑑
, 𝑢(𝑑𝑖) = 𝜓(𝑑𝑖)/𝑑𝑖, while 𝑣(𝑑𝑖) =

𝜓(𝑑𝑖)𝑑𝑖 − 𝜌(𝑑𝑖) + 𝑏0.  
Calculation of S estimation is done iteratively using equations (30) and (31). 

According to [30], the algorithm for S estimation is: 

1. Determine the initial estimation of mean vector and covariance matrix, �̂�0and 

�̂�0 

2. Calculate 𝑑𝑖 = (𝒓𝑖 − �̂�0)
′�̂�0
−1(𝒓𝑖 − �̂�0) 

3. Determine 𝑘0 so that 
∑ρ(𝑑𝑖/𝑘0)

𝑛
= 𝑏0 

4. Calculate 𝑑�̃� =
𝑑𝑖

𝑘0
 

5. Determine  �̂� =
∑𝜓(𝑑�̃�)𝑟𝑖

∑𝜓(𝑑�̃�)
  and   �̂� =

𝑝∑𝜓(𝑑�̃�)(𝑟𝑖−𝜇)(𝑟𝑖−𝜇)
′

∑𝜓(𝑑�̃�)
 

6. Repeat steps 2-3 until �̂� and �̂� convergent 

  3. Empirical Study  

3.1 Clustering and stocks representation of clusters  

In this study, we used the daily return of all stocks which are included in 
the LQ-45 index, listed on the Indonesia Stock Exchange for the period of August 

2017-July 2018, which is accessed online through the website https://finance. 

yahoo.com. The cluster analysis used were Ward and complete linkage algorithm. 

By using varclus function in R package, we found that clustering with Ward 
algorithm and complete linkage algorithm, stocks LQ-45 indexed can be grouped 

into 7  clusters, with members of each cluster as presented in Table 1 and Table 2.  

Table 1. Clustering of stocks with Ward algorithm 

Cluster  Stocks 

1 ADHI PTPP WIKA WSKT       

2 ASII BBCA BBTN BMRI BBNI BBRI     

3 GGRM HMSP TLKM UNVR ICBP KLBF SCMA PWON INTP INDF 

 JSMR          

4 ANTM INCO         

5 ADRO UNTR BUMI PTBA       

6 AALI LSIP         

7 AKRA MYRX BMTR SRIL BJBR SSMS PGAS BRPT EXCL SMRA 

 BSDE PPRO LKPR SMRG LPPF MNCN     
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Table 2: Clustering of stocks with complete linkage algortihm 

Cluster Stocks 

1 GGRM HMSP ASII BBCA ICBP KLBF TLKM UNVR SCMA PWON 

 INDF JSMR         

2 LPPF MNCN BRPT EXCL PGAS BBTN BMRI BBNI BBRI  

3 BUMI PTBA ANTM INCO UNTR      

4 BJBR SSMS         

5 MYRX BMTR SRIL        

6 AALI LSIP         

7 INTP LKPR SMGR SMRA BSDE PPRO AKRA ADHI PTPP WIKA 

 WSKT          

 

After clusters are formed the next step is the calculation of the Sharpe ratio of 
each stock in each cluster produced by two clustering methods to select stocks 

representation of clusters. In Sharpe ratio calculations, the risk return free rate used 

is the latest Bank Indonesia rate that is 5.25% per year. A Stock that represents a 
cluster is a stock that has the highest Sharpe ratio in the cluster. Based on the 

calculation of the Sharpe ratio of each stock in each cluster in two methods of 

clustering, we obtained stocks that represent each cluster to form the optimum 

portfolio as presented in Table 3 and Table 4. 
 

Table 3. Stocks representation of clusters with Ward algorithm 

Cluster Cluster Representation Return Risk Sharpe Ratio   

1 WSKT -0.00006 0.02545 -0.01033 

2 BBCA 0.00089 0.01285 0.05233 

3 HMSP 0.00066 0.02146 0.02137 

4 INCO 0.00258 0.02673 0.08885 

5 PTBA 0.00233 0.02601 0.08158 

6 LSIP -0.00111 0.01942 -0.06800 

7 BRPT 0.00042 0.02296 0.00954 

 

 

Table 4. Stocks representation of clusters with complete linkage algorithm 

Cluster Cluster Representation Return Risk Sharpe Ratio   

1 BBCA 0.00089 0.01285 0.05233 

2 BRPT 0.00042 0.02296 0.00954 

3 INCO 0.00258 0.02673 0.08885 

4 BJBR 0.00023 0.02246 0.00087 

5 MYRX 0.00043 0.03291 0.00675 

6 LSIP -0.00111 0.01942 -0.06800 

7 WSKT -0.00006 0.02545 -0.01033 

  

3.2 Comparison of portfolios performance  

In this study, the optimum portfolio was determined using the MV 

portfolio model with robust FMCD estimation (𝑀𝑉𝐹𝑀𝐶𝐷) and MV portfolio model 

with robust S estimation (𝑀𝑉𝑆). The first step is determining the portfolio weights 
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of the two models for various risk aversion values 𝛾 using function CovSest and 

CovMcd in R packages. As a comparison, we also determining the portfolio 

weights formed using the classic MV portfolio model (𝑀𝑉𝐶𝑙𝑎𝑠𝑠𝑖𝑐). The stocks used 

are stocks that represent each cluster for two clustering methods as presented in 
Table 1 and Table 2. The portfolio weights generated for the two clustering 

methods are presented in Table 5 and Table 6.  

 

Table 5.Portfolio weight of MV classic and robust portfolio with Ward 

algorithm 

Model 𝛾 WSKT BBCA HMSP INCO PTBA LSIP BRPT 

 0.5 -2.41372 4.07947 0.567023 6.03144 4.36919 -9.98716 -1.64626 

 1 -1.19807 2.27208 0.325333 3.04801 2.23501 -4.90548 -0.77688 

𝑀𝑉𝐶𝑙𝑎𝑠𝑠𝑖𝑐 2 -0.59025 1.36839 0.204489 1.55630 1.16792 -2.36465 -0.34219 

 5 -0.22556 0.82617 0.131983 0.66127 0.52766 -0.84014 -0.08138 

 10 -0.10399 0.64542 0.107814 0.36293 0.31424 -0.33198 0.00555 

 0.5 -11.09913 3.01825 5.134420 2.64043 14.09999 -13.02744 0.23346 

 1 -5.51484 1.78887 2.603222 1.32007 7.08539 -6.41399 0.13128 

𝑀𝑉𝐹𝑀𝐶𝐷 2 -2.72269 1.17417 1.337622 0.65989 3.57809 -3.10727 0.08019 

 5 -1.04741 0.80536 0.578263 0.26378 1.47371 -1.12323 0.04954 

 10 -0.48899 0.68242 0.325143 0.13174 0.77225 -0.46189 0.03932 

 0.5 -6.21418 1.74467 4.597106 3.50689 9.68051 -12.74687 0.43186 

 1 -3.06731 1.10568 2.340481 1.76421 4.88307 -6.28318 0.25705 

𝑀𝑉𝑆 2 -1.49388 0.78619 1.212169 0.89286 2.48435 -3.05133 0.16964 

 5 -0.54982 0.59449 0.535181 0.37005 1.04512 -1.11222 0.11719 

 10 -0.23513 0.53059 0.309519 0.19579 0.56538 -0.46585 0.09971 

 

 

Table 6.Portfolio weight of MV classic and robust portfolio with complete 

linkage algorithm 

Model 𝛾 BBCA BRPT INCO BJBR MYRX LSIP WSKT 

 0.5 6.41036 -1.14087 6.98125 -0.51028 0.46109 -9.32584 -1.87571 

 1 3.44013 -0.52416 3.52275 -0.17502 0.25239 -4.59449 -0.92157 

𝑀𝑉𝐶𝑙𝑎𝑠𝑠𝑖𝑐 2 1.95501 -0.21581 1.79349 -0.00739 0.14803 -2.22883 -0.44451 

 5 1.06394 -0.03079 0.75595 0.09318 0.08542 -0.80943 -0.15826 

 10 0.76692 0.0308 0.41009 0.12671 0.06455 -0.33629 -0.06285 

 0.5 19.71313 4.05346 4.39266 -2.45391 -17.40476 -5.14132   -2.15927 

 1 10.06745 2.07328 2.18078 -1.09881 -8.69087 -2.47936 -1.05248 

𝑀𝑉𝐹𝑀𝐶𝐷 2 5.24461 1.08319 1.07485 -0.42127 -4.33392 -1.14838 -0.49908 

 5 2.35091 0.48913 0.41129 -0.01474 -1.71975 -0.34979 -0.16704 

 10 1.38634 0.29111 0.19009 0.12077 -0.84836 -0.08360 -0.05636 

 0.5 16.85351 3.09968 6.33932 -7.27564 -8.60099 -7.27430 -2.14157 

 1 8.61765 1.58682 3.17373 -3.51781 -4.25517 -3.55818 -1.04704 

𝑀𝑉𝑆 2 4.49972 0.83039 1.59093 -1.63889 -2.08226 -1.70012 -0.49977 

 5 2.02896 0.37653 0.64126 -0.51151 -0.77851 -0.58528 -0.17141 

 10 1.20537 0.22525 0.32469 -0.13576 -0.34393 -0.21367 -0.06196 
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Based on portfolio weights, mean vectors and covariance matrices, we can then 
determine the return, risk, and Sharpe ratio of the three portfolio models as 

presented in Table 7 and Table 8. 

 

Table 7: Returns, risks and Sharpe ratio of classic MV portfolio and robust 

portfolios with Ward algorithm 
 

𝛾 
Return Risk  Sharpe Ratio 

𝑀𝑉𝐶𝑙𝑎𝑠𝑠𝑖𝑐  𝑀𝑉𝐹𝑀𝐶𝐷 𝑀𝑉𝑆  𝑀𝑉𝐶𝑙𝑎𝑠𝑠𝑖𝑐  𝑀𝑉𝐹𝑀𝐶𝐷 𝑀𝑉𝑆  𝑀𝑉𝐶𝑙𝑎𝑠𝑠𝑖𝑐  𝑀𝑉𝐹𝑀𝐶𝐷 𝑀𝑉𝑆  

0.5 0.04027 0.08594 0.05637 0.07922 0.17208 0.11268 0.14255 0.20681 0.16751 

1 0.02049 0.04293 0.02822 0.01988 0.04307 0.02823 0.14428 0.20617 0.16713 

2 0.01059 0.02143 0.01415 0.00505 0.01082 0.00712 0.14718 0.20465 0.16602 

5 0.00466 0.00853 0.00570 0.00089 0.00179 0.00120 0.15142 0.19831 0.16020 

10 0.00269 0.00423 0.00289 0.00029 0.00049 0.00036 0.14738 0.18311 0.14469 

 

Table 8: Returns, risks, and Sharpe ratio of classic MV portfolio and robust 

portfolios with complete linkage algorithm 

𝛾 
Return Risk Sharpe Ratio 

𝑀𝑉𝐶𝑙𝑎𝑠𝑠𝑖𝑐  𝑀𝑉𝐹𝑀𝐶𝐷 𝑀𝑉𝑆  𝑀𝑉𝐶𝑙𝑎𝑠𝑠𝑖𝑐  𝑀𝑉𝐹𝑀𝐶𝐷 𝑀𝑉𝑆  𝑀𝑉𝐶𝑙𝑎𝑠𝑠𝑖𝑐  𝑀𝑉𝐹𝑀𝐶𝐷 𝑀𝑉𝑆  

0.5 0.03375 0.07947 0.06715 0.06655 0.16069 0.13560 0.13026 0.19789 0.18195 

1 0.01713 0.03931 0.03326 0.01671 0.04021 0.03395 0.13143 0.19533 0.17974 

2 0.00883 0.01923 0.01632 0.00425 0.01009 0.00853 0.13323 0.19004 0.17510 

5 0.00384 0.00718 0.00615 0.00076 0.00165 0.00142 0.13436 0.17308 0.15967 

10 0.00218 0.00317 0.00276 0.00026 0.00045 0.00039 0.12656 0.14260 0.13109 

 

2. Discussions  

The results obtained through cluster analysis with Ward algorithms and 
complete linkage algorithms are that stocks included in the LQ-45 index can be 

grouped into 7 clusters as shown in Table 1 and Table 2. With clustering using the 

Ward algorithm, in cluster 1 WSKT has the best performance compared to other 
stocks in cluster 1 which are marked by the highest Sharpe ratio in cluster 1, which 

is -0.01033. So that WSKT was chosen as a representation of cluster 1. 

Furthermore, in cluster 2, BBCA with a Sharpe ratio of 0.05233 was 

representations of cluster 2, and so on BRPT with Sharpe ratio 0.00954 was a 
representation of cluster 7. On the other hand, clustering using complete linkage 

algorithms is obtained that in cluster 1, BBCA has the best performance compared 

to other stocks in cluster 1 which are marked by the highest Sharpe ratio in cluster 
1, which is equal to 0.0523. So that BBCA is taken as a representation of cluster 1. 

Furthermore, in cluster 2, BRPT with Sharpe ratio 0.00954 is representations of 

cluster 2, and so on WSKT with Sharpe ratio -0.01033 is representations of cluster 

7. Therefore, it is enough to consider stocks as presented in Table 1 (Ward 
algorithm) or Table 2 (complete linkage algorithm) for investment decisions. 

From Table 5 (with Ward algorithm), it can be seen that stocks with 

negative returns, namely WSKT and LSIP have a negative weight (short selling) 

for all risk aversion values 𝛾 in three portfolio models. Conversely, stocks with 

large returns, namely BBCA, HMSP, INCO and PTBA always have positive 
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weights on three portfolio models. From Table 5, it can also be seen that the greater 

the value of 𝛾, the weight of the stock with a positive return will be smaller, as well 

as for stocks with negative returns the weight of stocks for short selling also 

decreases as the value of 𝛾 increases. The same thing also happened in the 
formation of portfolios using representation stocks generated by using clusters with 

the complete linkage algorithm, as shown in Table 6.  

Measuring portfolio performance not only be seen from the return but also 
must pay attention to the risks that will be borne by the investor. Several measures 

can be used to measure portfolio performance, one of which is using the Sharpe 

ratio. Table 7 and Table 8 show the returns, risks, and Sharpe ratio of portfolios 
formed using cluster analysis with Ward algorithm and complete linkage combined 

with the classic MV portfolio model, 𝑀𝑉𝐹𝑀𝐶𝐷 model and 𝑀𝑉𝑆 model. From Table 

7 and Table 8, in general, it can be concluded that the performance of the portfolio 

generated by using clustering with Ward algorithm is better than the portfolio 
performance produced by the complete linkage algorithm for all risk aversion 

values 𝛾.  
 

4. Conclusions and Future Research  
 

This paper shows how to integrate clustering techniques into portfolio 

management and building systems to get an efficient portfolio. This can reduce a 

lot of time in stocks selection because stocks of similar categories can be easily 
grouped into one cluster. The best performing stocks from each cluster are then 

chosen as representations of the cluster to built the portfolio. The results showed 

that by using cluster analysis with Ward algorithm and complete linkage algorithm, 
45 stocks of the Indonesia Stock Exchange included in the LQ-45 index can be 

grouped into 7 clusters. Stocks as a representation of each cluster are then used to 

form a portfolio using the MV model with robust FMCD estimation, robust S 

estimation, and the classic MV model. Portfolio performance that formed by 
combining the result of two clustering methods and robust estimation techniques 

then compared. The results showed that portfolio performance with robust FMCD 

estimation was better than portfolio performance with robust S estimation as well 
as classic MV portfolio for all risk aversion values γ, both for portfolios produced 

by cluster analysis with Ward algorithm and complete linkage algorithm. 

There are many future research potentials in portfolio selection using 
clustering and robust estimation. It will be interesting to use nonclassical clustering 

methods and combine them with robust estimation methods and compare the 

performance of generated portfolios. 

 

ACKNOWLEDGMENTS 

The first author thank to Indonesia Endowment Fund for Education (Lembaga 

Pengelola Dana Pendidikan, LPDP) Ministry of Finance of the Republic of 

Indonesia for the scholarship funds given for my Doctoral Program at the 

Mathematics Department of Gadjah Mada University. 



 

 
 

 

 

 
La Gubu, Dedi Rosadi,  Abdurakhman  

____________________________________________________________ 

126 

DOI: 10.24818/18423264/54.3.20.07 

 

REFERENCES 

 

[1] Bengtsson,C. (2004), The Impact of Estimation Error on Portfolio Selection 
for Investor with Constant Relative Risk Aversion. Working Paper, 

Department of Economics Lund University; 

[2] Best, M.J. and Grauer, R.R. (1991), On the sensitivity of Mean-Variance 

Efficient Portfolios to Changes in Asset Means: Some Analytical and 
Computational Results.Review of Financial Studies,4(2): 315-342;  

[3] Broadie,M. (1993), Computing Efficient Frontiers Using Estimated 

Parameters. Annals of Operations Research,45: 21-58;  

[4] Ceria, S. and Stubbs, R.A. (2006), Incorporating Estimation Errors into 

Portfolio Selection: Robust Portfolio Construction. Journal of Asset 

Management, 7(2): 109-127;  
[5] Chen, L.H., and L. Huang. (2009), Portfolio Optimization of Equity Mutual 

Funds with Fuzzy Return Rates and Risks.Expert Systems with Applications, 

36: 3720-3727;  

[6] Chong, E.D.P and Zak, S.H. (2001), An Introduction to Optimization. 
Second Edition. John Wiley and Sons, Inc.;  

[7] Chopra, V. K. and Ziemba,W. T. (1993), The Effects of Errors in Means, 

Variances, and Covariances on Optimal Portfolio Choice. Journal of 
Portfolio Management, 19(2): 6-11;  

[8] DeMiguel V. and Nogales,F.J. (2008), Portfolio Selection with Robust 

Estimation. Journal of Operation Research, 57: 560-577;  

[9] Davies, P. (1987), Asymptotic Behavior of S-estimators of Multivariate 
Location Parameters and Dispersion Matrices. The Annals of Statistics, 15: 

1269-1292;  

[10] Guan,H.S. and Jiang,Q.S. (2007), Cluster Financial Time Series for 
Portfolio.Proceedings of International Conference on Wavelet Analysis and 

Pattern Recognition, ICWAPR, Beijing, China, 2: 851–856;  

[11] Hardin,J.S. (2000), Multivariate Outlier Detection and Robust Clustering 
with Minimum Covariance Determinant Estimation and S-Estimation.PhD 

Dissertation, University of California; 

[12] Hu,J. (2012), An Empirical Comparison of Different Approaches in 

Portfolio Selection. Project Report, Uppsala Universitet; 

[13] Kusch,P. (2012), Portfolio Optimization with Robust Mean-Variance and 

Mean-Conditional Value at Risk Strategies. Project Report, Department of 

Economics Umea University;  

[14] Lauprete (2001), Portfolio Risk Minimization under Departures from 

Normality. PhD Disertation, Massachusetts Institute of Technology; 

[15] Leon, S.J. (2002), Linear Algebra with Applications. Sixth Edition, Prentice-
Hall, New Jersey;  



 

 

 

 

 
Robust Mean-Variance Portfolio Selection with Ward and Complete Linkage 

Clustering Algorithm 

____________________________________________________________ 

127 

DOI: 10.24818/18423264/54.3.20.07 

[16] Long, N.C., Wisitponghan, N., Meesad, P. (2014), Clustering Stock Data 

for Multi-Objective Portfolio Optimization.International Journal of 

Computational Intelligence and Applications, 13(2): 1-13;  

[17] Lopuhaa,H.P. (1989), On The Relation between S-estimators and M-

estimators of Multivariate Location and Covariance. The Annals of Statistics, 

17: 1662-1683;  

[18] Markowitz,H.M. (1952), Portfolio Selection. Journal of Finance, 7: 77-91;   

[19] Marona,R.A., Martin,R.D., Yohai,V.J. (2006), Robust Statistics: Theory 

and Methods. John Wiley and Sons; 

[20] Nanda,R., Mahanty, B., Tiwari, M.K. (2010),Clustering Indian Stock 
Market Data for Portfolio Management.Expert Syst. Appl., 37(12): 8793–

8798;  

[21] Rousseeuw, P. and Yohai,V. (1984), Robust Regression by Means of S-

estimators, Appeared in Robust and Nonlinear Time Series Analysis. 
Lecture Notes in Statistics, 26: 256 – 272;  

[22] Rousseeuw, P.J. and Van Driessen, K. (1999), A Fast Algorithm for the 

Minimum Covariance Determinant Estimator. Technometrics, 41: 212 - 223. 
[23] Sharpe,W.F. (1994), The Sharpe Ratio. The Journal of Portfolio 

Management, 21: 49–58;  

[24] Supandi,E.D. (2017), Developing of Mean-Variance Portfolio Modeling 
Using Robust Estimation and Robust Optimization Method. PhD 

Dissertation, Mathematics Department Gadjah Mada University, Indonesia;  

[25] Tola, V., Lillo, F., Gallegati, M., Mantegna, R.N. (2008), Cluster Analysis 

for Portfolio Optimization.  J. Econ. Dyn. Control, 32(1): pp. 235–258;  

[26] Vaz de Melo, B. and Camara,R.P. (2003), Robust Multivariate Modelling 

in Finance. Working Paper Series 355, Federal University at Rio de Janeiro, 

Rio de Janeiro, Brazil; 
[27] Victoria-Feser,M.P. (2000), Robust Portfolio Selection. Research Report, 

Universite de Geneve; 

[28] Welsh, R.Y. and Zhou (2007), Application of Robust Statistics to Asset 
Allocation Models. Statistical Journal, 5(1): 97-114;  

[29] Xu, R. and Wunsch, D.C. (2009), Clustering. John Wiley and Sons Inc., 

Hoboken, New Jersey; 

[30] Zhou,X. (2006), Application of Robust Statistics to Asset Allocation Models. 
MasterThesis, Massachusetts Institute of Technology.  

 


